An Exploration of Hypotheses that Explain Herbivore and Pathogen Attack in Restored Plant Communities
نویسندگان
چکیده
Many hypotheses address the associations of plant community composition with natural enemies, including: (i) plant species diversity may reduce enemy attack, (ii) attack may increase as host abundance increases, (iii) enemy spillover may lead to increased attack on one host species due to transmission from another host species, or enemy dilution may lead to reduced attack on a host that would otherwise have more attack, (iv) physical characteristics of the plant community may influence attack, and (v) plant vigor may affect attack. Restoration experiments with replicated plant communities provide an exceptional opportunity to explore these hypotheses. To explore the relative predictive strengths of these related hypotheses and to investigate the potential effect of several restoration site preparation techniques, we surveyed arthropod herbivore and fungal pathogen attack on the six most common native plant species in a restoration experiment. Multi-model inference revealed a weak but consistent negative correlation with pathogen attack and host diversity across the plant community, and no correlation between herbivory and host diversity. Our analyses also revealed host species-specific relationships between attack and abundance of the target host species, other native plant species, introduced plant species, and physical community characteristics. We found no relationship between enemy attack and plant vigor. We found minimal differences in plant community composition among several diverse site preparation techniques, and limited effects of site preparation techniques on attack. The strongest associations of community characteristics with attack varied among plant species with no community-wide patterns, suggesting that no single hypothesis successfully predicts the dominant community-wide trends in enemy attack.
منابع مشابه
Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature.
The phytohormone jasmonic acid (JA) is known to mediate herbivore resistance, while salicylic acid (SA) and non-expressor of PR-1 (NPR1) mediate pathogen resistance in many plants. Herbivore attack on Nicotiana attenuata elicits increases in JA and JA-mediated defenses, but also increases SA levels and Na-NPR1 transcripts from the plant's single genomic copy. SA treatment of wild-type plants in...
متن کاملPlant defense priming against herbivores: getting ready for a different battle.
Plants have evolved various strategies to defend themselves against herbivores and pathogens. Although some of these strategies are constitutive, i.e. present at all times, others are induced only in response to herbivore feeding or pathogen infection. The induction of direct and indirect plant defenses in response to herbivory and other biotic stresses is well established (Karban and Baldwin, ...
متن کاملThe Root Herbivore History of the Soil Affects the Productivity of a Grassland Plant Community and Determines Plant Response to New Root Herbivore Attack
Insect root herbivores can alter plant community structure by affecting the competitive ability of single plants. However, their effects can be modified by the soil environment. Root herbivory itself may induce changes in the soil biota community, and it has recently been shown that these changes can affect plant growth in a subsequent season or plant generation. However, so far it is not known...
متن کاملPests vs. drought as determinants of plant distribution along a tropical rainfall gradient.
Understanding the mechanisms that shape the distribution of organisms can help explain patterns of local and regional biodiversity and predict the susceptibility of communities to environmental change. In the species-rich tropics, a gradient in rainfall between wet evergreen and dry seasonal forests correlates with turnover of plant species. The strength of the dry season has previously been sh...
متن کاملInoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a Generalist Moth
Pathogen attack and the plant's response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes), the cause of the devastating late blight disease, from wild Solanum species into potato changes the plant-pathogen interaction dynamics completely, but little is known about the effects on non-t...
متن کامل